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Final Progress Report: Compressive Imaging
via Approximate Message Passing

Dror Baron – North Carolina State University

1 Introduction

This report summarizes progress made during the project “Compressive Imaging via Approximate
Message Passing.” Below we state the problem in Section 2, and then summarize the important
results in Section 3.

2 Statement of Problem

Compressed sensing (CS) [1, 2] has sparked a tremendous amount of research activity in recent
years, because it performs signal acquisition and processing using far fewer samples than required
by the Nyquist rate. Breakthroughs in CS have the potential to greatly reduce the sampling rates in
numerous signal processing applications such as cameras [3], medical scanners, fast analog to digital
converters [4, 5], and high speed radar [6].

The intellectual foundations underlying CS rely on the ubiquitous compressibility of signals: in
an appropriate basis, most of the information contained in a signal often resides in just a few large
coefficients. Traditional sensing and processing first acquires the entire data, only to later throw away
most coefficients and retain the few significant ones [7]. Interestingly, the information contained in
the few large coefficients can be captured by a small number of random linear projections [8]. The
ground-breaking work in CS [1, 2, 6] has proved for a variety of settings that the signal can then be
reconstructed in a computationally feasible manner from these random projections.

Compressed sensing has been used in compressive imaging, where the input signal is an image,
and the goal is to acquire the image using as few measurements as possible. Acquiring images in a
compressive manner requires less sampling time than conventional imaging technologies. Applications
of compressive imaging appear in medical imaging [9–11], seismic imaging [12], and hyperspectral
imaging [13, 14].

As a motivating example, consider an image containing 512×512 pixels, which is roughly a quarter
million pixels. We can measure the image in a compressive manner using perhaps 50,000–100,000
linear projections (20–40% of the number of pixels), and later reconstruct the original 512×512 image
using some CS reconstruction algorithm. The reduction in the number of measurements is possible,
because images have sparse wavelet coefficients [15], meaning that most wavelet coefficients are small
in magnitude. Sparsity in the wavelet domain allows the image to be acquired and reconstructed from
far fewer measurements than the total number of pixels. Despite promising past work on compressive
imaging reconstruction algorithms, there is still great potential for faster algorithms that reconstruct
more precisely.

To pursue such algorithms, we used approximate message passing (AMP) [16], which is an iter-
ative signal estimation framework that converts a linear inverse problem, y = Ax + z, into a scalar
estimation problem, y = x + z, and performs scalar denoising in each iteration. The input of the
scalar denoiser is a vector of noisy observations, and these observations are of the same length as
the input signal vector x. Typically, the scalar denoising function is component-wise and separable.
That is, each entry of the input signal is denoised from its corresponding noisy observation. In
contrast, we propose a non-separable denoiser that uses all the noisy observations to estimate each
input component. The advantage of our proposed denoiser is that it makes full use of all available
observations to extract information pertaining to the input signal. Therefore, our approach can
estimate the input signal more accurately.
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The main problem addressed in this short term innovative research (STIR) program was to sig-
nificantly improve over current state-of-the-art compressive imaging algorithms in terms of both es-
timation error and runtime. Specific problems included:

• Non-separable denoisers in AMP: Bayati and Montanari have proved rigorously that AMP
supports component-wise denoisers [17]. However, our results suggest that AMP succeeds in
converting the matrix problem, y = Ax + z, into a scalar channel setting, y = x + z, even
when the denoiser is non-separable. We applied non-separable image denoisers within AMP
iterations.

• Other applications: We expanded our denoising approaches from 2-dimensional images to 3-
dimensional volumes, and applied these AMP-based reconstruction algorithms to hyperspectral
imaging systems. In both the 2D and 3D cases, we significantly improved over current state-
of-the-art compressive imaging algorithms in terms of both estimation error and runtime.

3 Summary of Important Results

Main results: The project studied two different compressive imaging problems. The first involved
2D images being acquired by random measurement matrices, and the second involved 3D hyper
spectral image cubes acquired by a coded aperture snapshot spectral imaging (CASSI) system [18].
For both systems, we employed non-separable denoisers within AMP. For reconstructing 2D images,
our algorithm [19, 20] uses an adaptive Wiener filter [21] for 2D denoising. Another option is to use
a more sophisticated image 2D denoiser such as BM3D [22] within AMP.

For reconstructing 3D images [23, 24], we hoped to apply a sophisticated 3D denoiser. However,
because the CASSI measurement matrix is structured and sparse, which violates the assumptions for
which AMP systems were formulated, we often saw divergence effects. While others have considered
various approaches to combat divergence [25, 26], the combination of a problematic matrix and
complicated non-scalar 3D image cube denoiser was challenging. Eventually, we decided to use a
simpler 3D denoiser, which is a simplified version of the adaptive Wiener filter [21]. This simplified
denoiser combined with damping [26] helped the reconstruction algorithm converge. Reconstruction
quality was typically 2–3 dB better in terms of square error than existing algorithms such as two-
step iterative shrinkage/thresholding (TwIST) [27] and gradient projection for sparse reconstruction
(GPSR) [28]. Additionally, the new algorithm is several times faster despite not needing to tune
any parameters. In contrast, TwIST and GPSR would likely require running the algorithms several
times for different parameter settings, yielding much slower reconstruction than our AMP-3D-Wiener
approach. We hope that this line of work may help bring compressive hyper spectral imaging closer to
practice. Indeed, we have started looking into technology transfer options. A US patent application
describing these ideas was filed during the project.

Viewed in combination, our two compressive imaging reconstruction algorithms demonstrate the
great promise of using non-separable denoisers in AMP. At the same time, the work on hyper spectral
reconstruction highlights that the combination of a structured matrix and complicated denoisers may
create divergence issues; we hope to expand our understanding of these challenges in future work.

Secondary results: The project also partly funded the PI’s work on three other related research
projects. Two of these involved universal algorithms for signal recovery [29–31], which estimates the
input statistics on the fly from the actual noisy measurements while simultaneously recovering the
input. The third involved fast parallel algorithms for data compression [32, 33].

Yet another benefit of the project was the training of doctoral students. Ms. Jin Tan was
completed supported by the project during the last several months of her doctoral studies; she is
expected to graduate in September 2015. Ms. Yanting Ma was partly supported for several months,
and is expected to graduate in 2017.
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